i
N

TTONA!

AERDONAUTICS ANL SPACE ADMINISTRATION

Technical Memorardum 33-280

Equivalent Spring-Mass Systemn
for Normal Modes

R. M. Samford
B. K. Wada

W. H. Gayman

"
//
IS mL
K

pcesy©

(_\ Q //
B
- o
%/
Q OR\(
< [(MEG
< \P AGES) (Oj/g
o«
E K et
T %
A RN
S oA CRO
[N
Py
1= d

JET PPOPULSION

LABORATONY
CALIFORIA INSTITUTE OF TECHK2LOSY

PASADEMA, CALIFORNIA

Fabruary 15, 1’,(71



NT[-14280

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.  33-380 2. Government Accession No. | 3. Recipient’s Catalog No.

4, Title and Subtitle 5. Report Date February 1k, 1971

EQUIVALENT SPRING-MASS SYSTEM FOR NORMAL MODES

6. Performing Organization Code

7. Author(s) R, M, Bamford, B. K. Wada, W. H. Gayman 8. Performing Organization Report No.

9. Performing Organization Name and Address 10. Work Unit No,
JET PROPULSION LABORATORY ’

California Institute of Technology 11. Confract or Grant No.
4800 Oak Grove Drive NAS 7-100

Pasadena, California 91103 13. Type of Report and Period Covered
Technical Memorandum

12, Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATIQON

14, i
Washington, D.C. 20546 4. Sponsoring Agency Code

115, Supplementary Notes

16. Abstract

Since the lower resonant frequencies are of interest in most structural prob-
lems, a significant reduction of independent variables is possible by the use
of the normal modes of structural subsystems as independent variables.

This memorandum describes a technigue that can be used to generate equivalent
spring-mass models for the normal modes of a structural subsystem when the
generalized mass matrix and resonant frequencies are available. Where modal
truncation is employed, the residusl mass matrix is used to preserve the
correctness of the rigid-body mass properties.

Applications of the modeling technigue and the residual mass matrix are

discussed.

17. Key Words (Selected by Author(s)) 18, Distribution Statement
Mathematical Sciences Unclassified -- Unlimited
Mechanics

Structural Engineering

19, Security Classif. (of this report) | 20, Security Classif. (of this page) | 21. No. of Pages | 22. Price
Unclassified Unclassified Lo




JATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Mermorandum 33-380

Equivalent Spring-Mass System
for Normal Modes

R. M. Bamford
B. K. Wada
W. H. Gayman

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

February 15, 1971



PREFACE

The vork described in this report was performed by the

Engineering Mechanics Division of the Jet Propulsion Laboratory.
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ABSTRACT

Since the lower resonant frequencies are of interest in most
structural problems, a significant reduction of independent variables
is possible by the use of the normal modes of structural subsystems as
independent variables.

This memorandum describes a technique that can be used to
generate equivalent spring-mass models for the nermel modes of a structural
subsystem when the generalized mass matrix and resonan: frequencies are
available. Where modal truncaticn is emplcyed, the rosidual mass metrix
is used to preserve the correctness of the rigid-body mass properties.

Applications of the modeling technique and the residual mass

matrix are discussed.
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INTRODUCTION

Since the l~wver resonant frequencies are of interest in many
structural problems, a significant reduction of independent variables is
made possible by the use of the normal modes of structural subsystems as
independent variables. Th2 representation cf the normal modes of the
subsystems as uncoupled single degree-oi--fre<: m spring-mass systems simplifies
the task of combining two structural subsystems which are attached ac a
common point and it puts the information in such a form that most structural
analysis computer programs can be used to evaluate the normal modes of the
total structure.

This report uses well-known concepts to develop a technique of obtaining
an equivalent spring-mass system for each normal mode when the dynamic
characteristics of the structural subsystem are available as a generalized
mass matrix and associated resonant frequencies. The dynamic characteristics
of a continuous subsystem can thus be combined with a discrete system because
the continuous subsystem can be represented by a set of mutually independent
single-degree-of-freedom systems.

A description of the procedure is to renormalize each normal mode such
that its reactions are represented by those of a corresponding single degree-of-
freedom equivalent system. Incremental inertia properties must be added in
the model to represent the rigid-body contribution of *he truncated normal
modes. To help illustrate the ideas, a simple model is qualitatively described.

The model is a representation of structure A, a cantilevered beam, attached

to a structure B as shown in Figure 1.
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Fig. 1 INITIAL STRUCTURE Fig. 2 CANTILEVER MODES OF STRUCTURE A

The equivalent single degree-of-freedom system for each normal mode of
Structure A (Fig. 2) is normalized and represenced such that each reactionm,

Ri’ is properly simulated when combined with Structure B as shown in Fig. 3.

Ki Mi i
w0 1
O 2

(ﬂ) "rigid mass"

Prno -

O "sprung mass''

|

Structure B

Fig. 3 MODELED STRUCTURE

The "rigid mass' in Fig. 3 represents the contribution of the truncited
modes to the rigid-body mass properties of Structure A.

The procedure to define equivalent single degree-of-freedom systems is
developed for the general case wherein six base reactions are represented by
three orthogonal force components and taree orthogonal moment compoments.
Appendices 1 and 2 discuss systems with fewer base reactions to aid in the

explanation of the ideas.
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ANALYSIS

The equilibrium Equations

The equilibrium equations for any discrete or continuous linear, undamped,
structural subsystem in terms of its rigid-body modes and its arbitrarily-

normalized characteristic modes are, in matrix form:

r i - vo ) - ( h ( )
RR | RN PR O : O P‘g F
e e b i I B D RN § < r

s

MMR% MNMJ PN) _O ; KNN_ UDN) \ /

RQ] = mass matrix, rigid-body modes
N] = inertial coupling mat. x, rigid-body and normal modes

NM] d1agona1 matrix of generalized masses in normal modes

L N “J [ M ]- the diagonal stiffness matrix

{Ret
{R,
(")

(F}

Eq. (1) may apply to a structural subsystem with inertia relief in some

vector of generalized displacements in rigid-body modes

—
i

vector of generalized displacements in normal modes

second time derivative of ( )

generalized force vector
rigid-body degrees of freedom, in which case the related MEN and MNE‘
terms are zero. Here the normal modes are to be regarded as applying to fully
cantiiavered structures.

Let ZL ((:""/, 2, 3) denote a set of orthogonal reference axes with origin

% N -
at the base point . The vectors, u‘. {z =/ 2, .‘)) » represent translational

*
The base point Is the point where the model [ the structural subsystem under
discussion is attached to another structural subsystem, effectively at a point.

JPL Technical Memorandum 33-380
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displacements (Fig. 4) and the vectors, ML' (L": 4, 5, 4) represent rotational

displacements. Unit vectors are 4 .dl: » and Aé .

A
u, ) f”t
X,

r — —_— — >
A X, X, 2y

Fig. 4 RIGHT-HAND COORDINATE SYSTEM

The displacement vector of a point on the structural subsystem is

{u} = [¢! ] 5: o

where

[C)SR] = rigid-body transformation matrix

[¢N] = R % S matrix of normal-mode displacements at the point,

where R< 6, and S = number of normal modes.

The original equilibrium equations can bLe written in a form also applvying
to a system of single-degree-of-freedom spring-mass elements, "ach of which

represents a normal mode. The following analysis leads to such a gystem.

JPL Technical Memorandum 33-380



The Mass Matrix

th , . . :
For the N normal mode, a renormalization factor is defin-.:

—2 —-2 Mz zZ ;s
Obn = (Mm + N’zu + My MN'\I (3)
(If the numerator is zero, use M"W , 1\715”, mﬂ:ﬁ}

*
The renormalized elements in the complete matrix are

NN

2 —
Miw = CﬁuMw

(4)
Min = ObNM‘.‘_N ({=1,...6)
It follows that
A
( 2 2 2z \2
M, * Mw + MBN B MNN (3)

If the modes are initially so normalized, then %” is unity, and subsequent
application of the criteria [Eqs. (3) and (4)] produces no change.
The lumped-mass system equivalent to the contim »us or discrete structural
subsystem is described in terms of selected normal modes, with the complete
model represented by the sum of such modal models.
A mass with magnit‘:_ude MNN is restrained to move parallel to the vector
M E‘f- M 1 + M ’le The line of action of M is placed such that
N 2N J N NN

, about the 1{‘ axes are

moment arms, Y(z+3) N
{
A 2
e = My, (M-;N+ )

it

2 2 %
rgN M5‘N/<M3~+ Mm)y (6)

2
oN MéN (M:;I * M;)

V

*
Mass terms with a bar represent the original mass terms, and without a bar
the renormalized mass terms.
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1€ MLN =0 (1 =1, 2, 3), the location of the rotatory inertia can be
chosen arbitrarily: howevazc, this inertia 1+ constrained to rotate about an
e - - . ; : -
axis parallel to the vecto: MHNL + M.’)'NA’ . M/ON/L. .
For the pr nt, a distinction is made between a normal mode of the
original distributed (D) structure and its equivalent Jumped (L) :ystem by

D
use of letter su- rscripts. The motion of the modal mass, M corresponding

NN
to a unit rigid-bodv trar slation is

L 12 0
Sbm' - MML/ MNN 1=1, 2, 3)

For a unit rigid-body rotation about, say, the % axis

L p* - \V2 3.) _ D D
QSN_ = r"(M'N +Mzu //Mw B MMé/MNN

Thus, in general,
D D
L :
. - . / = ] .
b My /M,  (i=1....¢) o

By definition,

L L D L D D o
Mi" = 4)H'L Mm: cbuaL = MiN M"Qr /Mml (8)
4 (i,};-.z,...a)

L
Moreovar, Since ¢NN =1

7

L L b i b
M., = qSNL MNN(IbNN = MiN )

Subsequently, the superscripts, L. and D, will be omitted.
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From Eqs. (8) and (9) the cumplete mass matrix for the N th normal-mode

equivalent may be written as

-

MMy, MmMuz -l

M_MMM .

oW .

M =
Mun )
\SYM.)

. \ [ () ! M )
e 780 RR | RN
Ml = |--T-- Lo
LMNR | MNN_J‘

JFPL Technical Mernorandum 33-380
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M

M NG

v, M

YN Nb

© MM

N Né

— e —— e te— —

Moy
IN' NN |

|
|
|
| MzN MNN
|

|

| Mo My
|

MM

I
| MSN MN:J

(1Ca)
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The Stiffness Matrix

. . th .
After renormalization, the stiffness matrix for the N normal mode is

| T

o , O
g

o ! K

I ! NN

S

where

The original structural subsystem represented by S normal modes can be
replaced by an equivalent discrete model comprised of S independent single-
degree-of-freedom spring mass elements. For the Nth mode, the mass is constrained
to move along a prescribed line of action. Elastic restraint is provided by a
spring of stiffness a): MNN'

The solution can be simplified by eliminating the calculations necessary to
determine the vector description of the line of action. Moreover, it can be
made adaptable to structural-analysis computer programs that allow restraints
in only one coordinate system.

Accordingly, the displacement system of Eq. (2), which provides for absolute
base—-point motion, is used.

Let Z(B = base-motion vector

U

N

modal displacement, in the absolute reference svstem, of the

point mass representing the N th normal mode

For the single point mass, M

4’»1’1

and, for base motion

[ CPRE]‘[I ]

NN ?
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In parallel with Eq. (7), the row matrix

Ld}NR" =\£A_"LR_J, where MNM is scalar.

Then NN
., 1
(2, I io](r)
Gl o)
\HN NK T J N
Premultiplying both sides of Eq. (12) by gives

R S o (13a)

{P} = [‘T‘]{u)} (13b)

th
The contribution of the N normal mode to Eq. (1) is now subjected to a

. th %
coordinate transformation. ¥or the N normal mode, the new stiffness matrix is

*This came result can be obtained by deriving the force required to give the
base a unit displacement, successively, in each degice of freedom while holding
the modal mass, N4NN » fixed in the absolute reference system. It can alsc
be obtained by requiring null forces for rigid-body motiomn; i.e.,

[ 00! 171 ) ]
KBB | Ken I O
____'_____ — — —— p—r —_— -
|
_KNB | KNN_ B @NRJ i O ]
from which

LKNB—\ = _KNNLCbNQ‘J
{ k<5h1} = -{qxqé% F<NN

J

[K;:,)] = *{KBN]{M?NR.I = {chN}KNNLCbNKJ

JPL Technical Memorandum 33-380 9



1
| — [ 17T T
T -y | © 0 L 0
i R A I B et
, - _ |
{O I RS -K*“‘dbd;.”ﬁl !J
[ ' , ]
’ RN KNN (.Duz | RN Kmd
= | —_ _ .
L. KMM qu& ' KNN .J
P | -
M. M
. RN " NR ll - Mgen
= a) MNN _
N e - - - — - = = (14a)
i
- Mg | MNN
Eq. (l4a) serves to define the following terms
- W) -
) Kur T Ken
{7(] = |--= - —~—— (14b)
| KNB i KNrJ N

10 JPL Technical Memorandum 33-380



. th .
The new mass matrix for the normal mode is

L)
a4

I

JPL Techrical Memorandum 33-380
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[ E—|
—
<
k4
R
e
—
e—)

NN

(15)

11



12

Th: Complete Mathematical Model

The equivalent discrete model representing S normal modes of the original

structural subsystem has the stiffness matrix,

(v=s ! -
. | .
E KBB | Ksu Kaz 7 Kos
N=
LR R RE R
KB‘ f H
e [,
B ! (16)
/( KBZ | KZZ
. l ®
l
‘ , .
. i .
T [
e Kes
- —
and the mass matrix
,r | _
1
Mees €
, M
[;2??1 _ ! J
- (17)
J M,
0 .
M
| SSA—
where the "residual mass matrix,"”
] "E MauM R
—— — N
[M Res ] [ MRR] N; M (18)

Eq. (1) becomes transformed to

[2)fif + K - fa]
St

* See footnote, page 18.
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The Residual Mass Matrix

The mass matrix of Eq. (1) is commonly obtained from an initial finite-

element mathematical model. Its submatrices may be identified as

Me] = (6] [n] (4]
o]~ (6] 1] (4
W] - (6] ] 6

where [m] is the initial mass matrix of rth order, and, in general, is non-

diagoual
[ch] is the (r X R ) modal matrix for rigid body modes
]
[ch] is the modal matrix for the normal modes.

If all I' modes are chosen for use in Eq. (1), [4)”] is a square non-
singular matrix, aid hence can be inverted.

(w)
It car. be deduced from the form of MRR in Eq. (10) that if all of the

modes are retained, then

[MEN] [mw].'[muz] = [MRR] (23)

Indeed, if Eqs. (21) and (22) are substituted in Eq. (23),

M -4 )R] ] (& (&0 ][]
= [6] [7][8] <o sortne 1n 50, 20

If, as a matter of engineering judgment, S modes are chosen (S<TI ),

there is a 'cesidual mass matrix,"

[MRES] - [MRR]' [’\_ARM] W\mj | [Musz] (24)

Eq. (24) is completely general; its validity does not depend cit the renormal-

ization decribed by Eqs. (3) and (4).
JPL Technical Memorandum 33-380 13
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The residual mass matrix must be added at the base to provide simulation
of the total rigid-body mass properties. This addition may be done directly
if the computer program to be used accommodates non-diagonal mass matrices.
However, two alternate methods are described.

The first and philosophically most obvious is to choose a sufficient
number of normal modes to make the residual mass terms negligible. This is
not necessarily a practical or desirable course.

An alternative method is to add as many additional spring-mass elements
as there are rigid-body degrees of freedom; and to assign to each a frequency
well above the modal frequencies of interest or of validity for the total
structural system. The[hﬂku]natrix for the added systems is contained in the

relation

Meed = [Mea][Mus] [Moe] =

h rigid body mode [from Eq. (5)]

where, for the é,th normal mode and the Lt

A3

(26)

(use‘4%= 4 . . . 6 1if }E = 0)

Eq. (25) may be written as
/ i

MglMa] Ml M = M) e

where the indices, J% s L , pertain to rigid-body modes and where the row and
column indices have been included in matrix labels to maintain the
correspondence to the physical problem.

The matrix equation (27) can be written as

M) = [01P] as

JPL Technical Memorandum 33-380



Let [D] be the Choleski decompo.ition of [MRES]'
=Y

D)= M1 [m]
Y
M= M) [D):] -

— . (30)
hAJL k4£[ 30

Thus, use of Eqs. (29) and (30) in Eq. (26) gives

Then

[

M}j’ )3:.: MJ ?fk

or

M'/z
i

Yo

: (31)
k=1 )Jk
Substitution of Eq. (31) into elcr.zuts of Eq. {29) gives, with use of Eq. (30),
, = o (32)
i= Do/ 30

(use /é.s 4 .. .6 1in Eqs. (31; and (32) if E’ 0)

Thus the added '"high-frequency' modes, of number equal to the rank of [MRES] .
completely account for the residual mass elements resulting from truncation.
The generalized masses for these normal modes are obtained from Eq. (31), and the

"rigid-elastic" coupling matrix is obtained from Eq. (32).

JPL Technical Memorandum 33-380 15



APPLICATIONS

The first documented application of the renormalization concept
described herein appears in Ref. (1). The only available mathematical
models of the cantilevered Ranger and Surveyor spacecraft were obtained
from modal surveys by application of Eq. (14), wherein the 2 were the
measured mode shapes associated with physical iters of known mass properties.
In the case of KRanger, only the first cantilever torsion mode was of interest.
In the case of Surveyor, nine modes having significant coupling with "rigid-
body roll" were chosen. Since the launch vehicles in both cases were repre-
sented by discrete torsion-spring and moment-of-inertia elements, it was
expedient to represent the normal modes of the spacecraft by equivalent
spring-mass systems.

The Atlas booster engines and the Centaur main engin s were remodeled
in a manner to assure only artisymmetric motions. Each engine mode was
coupled with rigid-hody roll of the axis containing the two gimbal blocks;
product-of-inertia terms provided the coupling. On renormalization, each
antisymmetric mode or the engine pair was representable as a single spring-
mass system, and a residual mass (moment-of-inertia) was attached tc the node
in the plane of the gimbal blocks to preserve the total rigid-body properties.

Perhaps the most useful facet of the concepts presented herein is the
physical "feel" provided to the analyst by associating the MRN vector with

base reactions and by using tne residual mass matrix as a guide in truncation.

JPL Technical Memorandum 33-380



As an example, a mathemarical model of a spacecraft and its structural
adapter to the launch vehicle was developed for use with the SA™IS Computer
Program (Refs. 2 thrcugh 5). The mass matrix of this model was of 139th order.
The first 42 normal modes were computed, along with the MRN and Mpp matrices.
Additionally, the 7 idual mass matrices were com uted for the number of
consecutive modes from mode 1 through mode 42. Table 1 lists the main-
diagonal elements, M?i of the residual mass matrices through the l4th
mode, and lists, also, the‘ﬁsMgi associated with each added mode. 1iIn the

first mode, the generalized mass asscciated with the X, (translational)

—

coordinate (i.e., M22) accounts for 82% of the rigid-body mass;ﬂand the
generalized mass associated with the X, (rotational) coordinate (i.e., M44)
accounts for 72% of the rigid-body moment-of-inertia about the Xy axis
(see Fig. 4).

The first ten mudes contain little effective mass in the longitudinal
(x3) direction; the 1llth and 12th modes account for 857 of the rigid-body
mass effective in the Xq direction.

anaZXP%i_of Table 1 pernit qualitative description of the character
of a m-.e without any detailed knowledge of mode shape. Those modes for
which allZS;Mii are small are termed "local mcdes," in which some component
or appendage is the principal contributor.

This type of information can be of use to the analyst who is uadertaking
a dynamic loads ans'ysis of the entire space vehicle. If che objzctive is
to cttain a preliminary assessment of loads on the launch vehicle, economies
can be effected by deleting 'local modes," with placement of the appropriate

residual masses at the base of the spacecraft.

JPL Technical Memorandum ?5-380 17
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During a modal surv-y cof the Mariner Mars ‘71 Development Test Model,
an on-site computer termi-.al was used to make an orthogonality check of
measured modes after completion of the survey of the second and each subse-
quent mode. The vresidual mass mat:ix was also computed. Inupection of this
matrix served as a guide in shaker placement for excitation of a new mcde.

It also served as a practical indicator of the number ¢f modes to be surveyved.

CONCLUSION

The concepts presenced hercin are intended to aid the phyrical under-
etanding of the dynamic influence of 5 ccmplex substrrt.re at its point of
attachment - to another substructurz. There may be instai in which it is
convenient, for onc reason or another, to adopt the equivalent spring-mass
approach througn the described renormalization process.

The concept of the residual mass matrigz-wh;cl is not depend~nt on
any particular modal normalization, is, nonetheless, a byproduct of the
modeling concept. It has proved to be very usefu' in tne exercisec of

engireering judgments relating to modal truncation in analysis and to the

requisite completeness of a modai vibration survey.

*Footnote:

After the completion of the draft >f this memcrandum, it came to the
authors' attention that Schwendler and Ma~Neal, in Ref. 11, define and use
"residual flexibility matrices.” Morenver, in writings not in the open
literature, MacNeal has rsed the term '"residual mass matrix" with exactly
the same def” ition as giien rein.

JPi, Technical Memorandum 33-380
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———

RESIDUAL MASS MATRIX ELEMENTS, % OF CORRESPONDING RIGID-BODY ELEMENT

— F r T
No. ‘ : ’
R N TN (-0 Vo N VA VA YV (Y R VY 0 T Mod
f k“ Y H . ' g f ode ode
Mzdes - iz>w‘"' ﬁ 22 Zk 22 33 33 bh b 5 55 66 66, Description No.
-:— T — et — o t—— -
0 100.0 EEIOO.O' - 100.0 1 100.0 100.0 100.0 "Rigid-Body"
. 5.2 | 81.8 7L.5 2.7
1 94.8 . i 18.2 i 100,0: 28.5 96.3 95.4 "lst Beading" L
796 | 6.0 1 | 7.9 57.1
2 15.2 Lo12.0 ) 100.0! | 20.6 39.2 95.3 "2nd Bending" 2
! | . 8.5 | 3.7 38,1
3 4.9 | 3.7 100.0! 16.9 39.0 57.2 "lst Torsion" :
b 9.0 | | | 35.8
b 5.9 | ﬁ 3.7 I 92.7 | 16.9 3.2 56.9 "3rd Bending" b
! ; ! f ; 1.9
5 5.9 ! 3.7 . 99.7 | 6.9 3.2 55.0 "Locel" 5
6 5.9 i 5.5 99,7 | 16.7 3.2 54,9 "Local" 6
) g ﬂ 2.8 | 1.6
7 5.8 i 3.5 1 96.9 16,4 3.1 50.3 "Local" !
! ! I { 38.1
8 5.8 Y345 h 96,7 i 13.6 3.1 12.2 "2nd Torsion" 8
! { ST ; 11.5 L.7
2 5.5 1 2.8 | 96.4 | 2.1 3.0 7.5 "Lth Bending' 9
'y 3.1 i ! 1.3 1.8
10 2.4 ’ 2.7 I 96.4 | 1.7 5.7 10
\ ’ il !
11 2.3 f 2.6 ﬂ 96.4 L,9 "Local" 11
i g i ) 55.5
12 2.3 Foo2.5. “ h0.9! 4.9 "lst Longitudinal'{ 12
i ‘ " 29.3 |
13 2.3 T2, I ll.6? | 4.9 "2rd Longitudinal'l"
'i " , I '
h 2.3 C2.1 . 10,6 ) ‘ i J k.9 "Local" 1k
Table 1. Residual Mass Matrix Elements Applying to Consecutive Numbera of Normal Modes of a Spacecra®t Model

Having an Inizial Dynamic Matrix of 139tn Order.
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APPENDIX 1

111istrative Case of a Single Base-Reacticn Component

Consider the longitudiral modes of a "fixed-free" uniform bar of length‘Z?
and weight per unit length, J~ . From Ref. {6), it can be shown (using

Timoshenko's notation) that the circular frequency of the ith normal mode is

a

. = 'g‘(‘[)‘ (¢35 ) a.n
- (-_%c)
where a \‘ Y

The modal amplitude at a distance Z from the root is

X = Dyen(PE) (£:435- ) a

where D‘: is, in general, an arbitrary normalizati.c factor.

Here it will be shown that, for each mode, a value of DL exists to 2ive
base reaction eguivalence between the ccatinuous system and a simple spring-mass
model.

Tae generalized mass of the ith mode is
Z
—_ 2
M'i = fXL/‘/dZ (1.3)
L
[/

where /q = 3//?, . Use ol Eq. (1.2) in Eq. (1.3) leads to

—_— 2
YA
M~' _2—,_‘ DL (1.4)

el

The axial load in the ith mode at séation X is

10 f_)( Ma/x (1.5)
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At the base,
g

o = K

J4
)(XrXL’M[//’L (1.6)

r O

where JK:V is an arbitrary rigid-bedy displacement.

The integral in Eq. (1 u) is recognized as the "rigid-=lastic” coupling term

in the partitioned matrix

M]

wherein P¢1

r

]
=
ﬂ?xiﬁa

N
S

With :><_ = 1.0,
f M(r=,(4/=)77

é_ - 79L2 ‘\—/-lri

(1.7)
Use of Eq. (1.2) ir the integral of Eq. (1.6) gives
E;a _ JZAQOéy [>,

To replace the ith mode of the continuous system with a simple system as

sketched, it s necessary only to specify a modal renormalization that equates
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the inertia force to the force acting on the base:

i.e.

(1.9)
(1.10)
(1.11)
- \ 7
( ‘ = /l jl .{) /
and tnhe mass matrix becomes
[~ l M i
Mrr ' ri Mrz " Mm
— — _.'—. — — - — — —_— — —
|
{b“1] - h/1lf i Pv1ll
|
sz ! M’ll
. |
. | *
|
hAnr. NanJ
It is convenient to rewrite Eq. (1.11) as
§wm :
—_ ,r = A :'/2 3 .o e
Mn MLL ﬂ’z(QZ-!? ( ) %0~ ) (1.12)
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For the infinite set of elastic modes

o0 - -

55?7 '
—_ (1.13
Mii = z E AL )

~ .
i

~

I

—

—
!

From Ref. (7)

/
/ AR A
{/0 (_/_X)(/l. - /—Zz *‘31. ;Lz‘/' L .:_Z 1.18)
2 X 2

From Ref. (8), the sum of the irfinite series

+ L + + -

/ 4 = L 7
i Z«z, 3& 9"2. ""é— (1.15)

Addine tLo<e saries gives

rs

(Q(/-/—:g—/f-f‘—/'"?":-r ):2_7_7_’

r A ~2
S

or
_ (1.16)

Thus

(1.17)

In most practical engireering situations, use of a relatively few of the
lower modes suffices. Thus, in order to keep the rigid-body mass properties

correct, a residual mass is added to the base.
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M., = M, - 2 M, (1.18)

The equivalent mathematical model of the '"fixed-free" uniform bar is sketched
in Figure 1.1, which also shows the decrease in MEEE»/ Mrr with increasing

number of mcdes selected.
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APPENDIX 2

Illustrative Case of Two Base-Reaction Components

Consider the bending modes of a cantilevered uniferm beam, for which
there will be transverse shear and bending moment to be rtacted by the base
References 9 and 10 deal with characteristic functions of uniform

beams with various boundary conditions. The modal normalization has been

chosen such that, for the nth mode,

£

f' ¢:(x)dl 4

()
where / is the beam length. Let 4/ be the mass per unit length. Then the

generalized mass in the nth mode is

Z ,
M = ,é/f é(z/dl —td = m

0
The shear at the beam root is

4
Z = CU: /é(%}ﬂd){

Z
= ﬁ‘)iz/é.géﬂ.ua/l
Ao

where ¢ =A is an arbitrary rigid-body translation.
r

JPL Technicai Memorandum 33-380

(2.1)

(2.2)

(2.3)

27



28

In this context, the integral of Eq. (2.3) is the "translation-elastic" coupling

——

tern, M

in . ° .ass matrix
T™h

<

TT TR T Mrz -

e Mes

T

< <
4

<

kg

L]

<l

(2.4)

&
I

!
X
Far)
=

-[\7'47' K_AA R

=

The bending moment at the root is

2 £
77/=ag,/z¢,,wa/z
0

A 4
- S [ Gyl @9

o

where ¢'€ = Qf% the transversc uisplacement cof an element cf the beam at

station)_/ for an arbitrary rotation, é,e » about the root. Thus, the integral

of Eq. (2.5) is the "rotation-elastic" coupling term

£
mRn = ( ¢R¢n,qa/l (2.6)

o
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Since the normalization of  he rigid-body miues is optional, let 5;6

and A be unity. Then

{
'\—ATn - (9'/\"/40{24
{
Mg, = J/xgé,,aa’z
Now ’ /p |
M = [?5.7_1,0(0(21 =m

" /
= 4 Vv - /77
Mrg [gér"éz’”d’“ Z
J 2
S 7
MER = J ¢R,0{0/l = ——-—-—}g
0

From i tegral 1 of 2ef. 10
4 (0(
,(,(fds Az = L=z
' 2.2)

From Integral 25 of Ref. 10

n.f(

Y4 2
w f:c/ﬂg,, ()% = zm/(—/v)

Ref. 9 tabulates values of 0<,7 and /9”/ .
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4 (2.9)

(2.10)

(2.11)
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Now, to represeunt the nth normal mode by a simple spring-mass system,

first choose a renormilization factor

—

MTI’I

I~ W

Then the new matrix elements are

— A Z )
i — - A
MTn (jh MTh = 4m (I@hz )
S (2.12)
2
M, =g M = dm(22
hn %n nn ﬂ /
n: J
(The shear at the base is now ""matched.')
li(5r)
= N = (2.13)
MRn g" MRn “4m a(”(/ﬂ,,/)
The “Yase moment may be matched by placing the lumped mass at station
M !
X = Rm =2 — — ©(2.14)

" Mon dﬂﬁ/)‘
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In the model. this placement may be done in at least two ways:

M

N
2
/ g I
; Knn - wn r\”rl()
Z ﬁr
:
4 L~ rigid, massless link
X,

A1
y 7 {> Man
7/
Vs
g L massless beam of rigidity,
s 3

(EI)n = %wnsz xn

It can be sunown that

.?,
Ty
o

I

N
lin: 3. M,

N->00 |

N
her E ?‘{nt"'/?nn = '\41”2
|

N->o0

-

N 2
!wﬂ z Xn i“fiﬂﬁ = !\ARR
NP0
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ror a fipite numbcr of modes, N , a residual mass must be attached to the

base.
N
. — A _ O
Mees = Mo = LM, (2.18)
1
By olacing this mass at
Mzr,

(2.19)

Xpes, =
My

-Mz —D'jz

the static-moment equivalence is preserved.
In general, the rigid-bcody moment-or-inertia equivalence may require the

addition of a centroidal moment-of-inertia.

(T)__ M - TM X - %

O el r. i ' nn n RES, EES

or

r—
The Lhﬂ] and [hA] natrices for the first five normai modes of a uniform

cantilever beam are presented below:
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_ -
]
1 £ 1 78299 .43394  .25443  .18190  .14147
2 |
P [}
L i 56883 .090767.f .0326167 .018552f .010007¢
3
' ——
i
r— : 1 0 0 0 0 (2.2
[M] = |
i 1 0 0 0
!
]
| 1 0 0
(SYM)
| 1 0
1
1
i 1
— 1 ‘J
_ -
|
1 »_/ i .61307  .18830  .064735 .033088  .0:0014
2 ]
2 |
{ i 445394 0393874 0082476 .00300897 .0014157F
1
i
| .61307 0 0 0 0 (2.2
[M] = m !
; .18830 0 0 0
i
]
i .064735 0 0
! (SYM)
: .033088 0
]
]
E .020014
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Table 2.1 gives a description of residual mass .:quirements as a function
of the number, N, of uniform-beam elastic modes chosen. 1t illustrates the
approach of the residual mass to zero as N increases.

A model representation is given in Fig. 2.1.

H

N | M X ( Io)
_RES RES RES
MTT l MRR

1 . 3869 .1411 .00616

2 .1986 .0767 .00103

3 .1339 .0521 .00031

A .1008 .0394 .00010

5 .0808 .0316 .00004

TABLE 2.1 RESIDUAL ::ASS DESCRIPTIONS AS A FUNCTION OF
THE NUMBER OF ELASTIC MODES CHOSEN.

M.,
(EI) x‘!. Mnﬂ M
£ o o o y RES .
( I)z ét)n X res (Er)zes -0

77Ty 7T 777 A S A A A A A A I°

FIG. 2.1 MATHEMATICAL MODEL OF THE FIRST N NORMAL MODES OF
A UNIFORM CANTILEVER BEAM.
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The stiffness matrix associated with this system is

I P S —

2 , 2
where QN = (wN/a);)

2
From numerical values cf ﬂN listed in Ref. 9 , the stiffmess matrix

for the first five modes is

[ .
]
o} 0
i
d -
T
i
! .6131
1 .
K]= K |
E 7.395
]
; 19.33
o |
| 39.12
]
]
i 64.66
- i -
¢ 2
where K ” CU, m
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and

[77] =

36

Application of the coordinate transformation of Eqs. (14) and (15) leads to

m

JPL Technical Memorandum 33-380

[~ : —
131.7 12.664 | -.6131  -7.395  -19.93  -39.12  -64.67 |
Z I :
A
1.6184 5 _aesnd 15614 -2.500d -3.5564 —4.574/
:
—_— —_— S S ——— e e et e e
1 .
: .
I .6131 !
! |
E 7.395 |
\
| ! 19.94
!
! i (5YM) 39.12
' 1
g 64.67
— ‘ -
|
.0808 .00255/:
]
{
.00255¢ .00010f"} 0
i _ ~ _
]
|
I .6131
' !
.1883 !
| i
] i
; 0 | .06474 l
.03309 |
]
; | .02001_J



As a further illustration, assume that only the first three normal modes of
the uniform beam are to be chosen, and that the truncated modes are to be represented
by two additional spring mass systems of arbitrarily high frequency.

From Eq. (28), the Chcleski decomposition matrix is written as the upper

triangular matrix

.
. Dq_T Dq.p\ (T: translation)
[DJ = (R: rotation)
] ®) D5R ]

The residual mass matrixz, determined from values listed in either Eq. (2.21)

or (2.22) by use of Eq. (24), is

[ a,“ O.| ‘L- [- .13389 .00697
[MRss] = =
Ay Q) .00697 .00047
Then, by Eq. (28)
i} - - r .
DU(T O qu Dw'(’ Q, a,
Die Dse|| O Dk ] A,, a-zz__i
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frer which

7
Dq.,—— = a’u / DA»T ) Va'u
= A 21
Dy Oyr © P » Dyr =
V&
" 2 / a?.
- - . - Qg
DLHZ* D ® A,y ) D52 \/ Z,, a,
From Eq. (32), and the above,
- D ‘/Dz
B g1 VY “ur
= Dys = Qg

i

M
MR4
M
M

From Eq. (31),

2

M44 = DPry
A

Mss = Das

2
A 2

= a’li
a -
22 sz”
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In matrix form, for the two added degrees of

Using these hAiL

two rows and columns of Eq. (2.22), and making the coordinate transformation

indicated by Eqs. (15)

o - —

freedom,
.13389 0
9 2
.00697.L .000107
.13389 0
2
0 ) 00010.[

T
. hﬂ}} , aad AA}L matrices to replace the last

and (14) leads to

7] =m

.6131

.1883
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.0674

.13389

2
.00010 /
-
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and, with the original frequency ratios

the two residual-rass modes,

40

p——

186.3 12.77[ i

e_

1.72%1

-.6131

.44541(

of modes 4 and 5 arbitrarily retained for

-7.395 -19.93 -158.31 O

-1. 54117 -2. 5401? -8. 2411? - 34631?

(SYM)

—— - - - - = — ——— o  —f - ——

.6131

7.395

19.93
158.31

.3463 £
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